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ABSTRACT 

Motivation: Current methods in diagnostic microbiology typically 

focus on the detection of a single genomic locus or protein in a 

candidate agent. The presence of the entire microbe is then inferred 

from this isolated result. Problematically, the presence of 

recombination in microbial genomes would go undetected unless 

other genomic loci or protein components were specifically assayed. 

Microarrays lend themselves well to the detection of multiple loci 

from a given microbe; furthermore, the inherent nature of 

microarrays facilitates highly parallel interrogation of multiple 

microbes. However, none of the existing methods for analyzing 

diagnostic microarray data has the capacity to specifically identify 

recombinant microbes. In previous work, we developed a novel 

algorithm, VIPR, for analyzing diagnostic microarray data. 

Results: We have expanded upon our previous implementation of 

VIPR by incorporating a hidden Markov model (HMM) to detect 

recombinant genomes. We trained our HMM on a set of 

nonrecombinant parental viruses and applied our method to 11 

recombinant alphaviruses and 4 recombinant flaviviruses hybridized 

to a diagnostic microarray in order to evaluate performance of the 

HMM. VIPR HMM correctly identified 95% of the 62 inter-species 

recombination breakpoints in the validation set and only two false 

positive breakpoints were predicted. This study represents the first 

description and validation of an algorithm capable of detecting 

recombinant viruses based on diagnostic microarray hybridization 

patterns. 

Availability: VIPR HMM is freely available for academic use and 

can be downloaded from http://ibridgenetwork.org/wustl/vipr 

Contact: davewang@borcim.wustl.edu 

Supplementary information: Supplementary data are available at 

Bioinformatics online. 

1 INTRODUCTION  

Recombination constitutes an important source of genetic variation 

among viruses. As an evolutionary mechanism, recombination 

leads to new viral genotypes with potentially novel biological 

properties and/or clinical manifestations. Vaccine-derived 
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poliovirus is one example of a virus for which recombination may 

play an important role in the progression of disease. 

Recombination between vaccine-derived poliovirus and coxsackie 

virus has been shown to increase neurovirulence of recombinant 

progeny and may be responsible for the emergence of pathogenic 

vaccine-derived poliovirus (Jegouic, et al., 2009). In addition, 

H1N1 influenza and Ngari viruses provide examples in which 

novel genotypes consisting of genomic segments derived from 

multiple different parental viruses have led to disease outbreaks. 

H1N1, the influenza virus responsible for the 2009 outbreak of 

pandemic flu, is thought to have arisen from the successive 

reassortment of four different strains of influenza A (Neumann, et 

al., 2009). Ngari virus, a hemorrhagic fever-causing bunyavirus, is 

thought to have resulted from the natural reassortment of two 

viruses, Bunyamwera and Batai viruses, neither of which is known 

to cause hemorrhagic fever (Briese, et al., 2006; Gerrard, et al., 

2004). Given that recombination and reassortment can play 

important roles in producing novel variations that are implicated in 

pathological outcomes, the ability for clinicians to identify novel 

recombinant and reassortant viruses in diagnostic laboratories is 

highly desirable. 

In addition to occurring naturally through evolution, 

recombinant and reassortant viruses can also be deliberately 

created in the laboratory. In vitro recombination has proven to be a 

useful tool for engineering novel viruses with properties desirable 

for the development of vaccines (Atasheva, et al., 2009; Brandler, 

et al., 2005). However, this also means that recombination and 

reassortment have the potential to be used maliciously to develop 

novel agents of bioterrorism. Such agents could be engineered as 

highly pathogenic new viral genotypes consisting of the 

components of previously described viruses including non-

pathogenic viruses. Anticipating the possible use of 

recombinant/reassortant-based bioweapons should guide our 

efforts in preparing to respond to such attacks. In such cases, the 

ability to detect novel agents quickly and accurately would be 

critical. Thus, it is imperative that any assay used to detect agents 

of bioterrorism include novel recombinants and reassortants as 

possible outcomes. 

Microarrays are well suited to detecting recombination and 

reassortment and have an important advantage over traditional 
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diagnostic methods because they allow for the interrogation of 

multiple loci from multiple viruses in parallel. Traditional methods 

for microbial detection, such as PCR and antibody based methods, 

are generally limited to detecting only one genome segment or one 

protein per assay. The inference is then made that the entire 

genome is present given that a small part of the genome (or 

proteome) was detected. Unless other loci are specifically assayed, 

this diagnostic paradigm does not account for the possibility that a 

recombinant or reassortant virus is present. There have been many 

reports of the efficacy of microarrays as a tool for viral diagnosis 

and discovery (McLoughlin, 2011). While many different probe 

design strategies and platforms have been proposed for diagnostic 

microarrays, all approaches require an objective method for 

interpreting the raw hybridization patterns.  

The method must be able to make diagnostic calls in the 

presence of technical noise, biological noise (i.e. cross-

hybridization to host) and probe saturation. Published examples of 

such methods with downloadable or web-accessible software 

include E-Predict (Urisman, et al., 2005), DetectiV (Watson, et al., 

2007), PhyloDetect (Rehrauer, et al., 2008), CLiMax (Gardner, et 

al., 2010) and VIPR (Allred, et al., 2010). While these methods 

have been shown to perform with high accuracy, none of them was 

designed to be able to identify novel recombinant or reassortant 

viruses from a hybridization pattern. 

One feature of VIPR, which stands for Viral Identification with 

a PRobabilistic algorithm, is that it relies on an empirical training 

set of positive and negative control hybridizations to leverage 

diagnostic predictions. In this paper, we describe the expansion of 

VIPR to accommodate the possibility of recombination between 

candidate viruses included in the training set. We accomplished 

this by incorporating a hidden Markov model (HMM) into our 

method in order to define recombinant paths when calculating 

probabilities for candidate viruses (Figure 1). Figure 2 shows the 

details of constructing the HMM. The Viterbi algorithm was used 

to determine the optimal path from which recombination 

breakpoints could be inferred. As with VIPR, our HMM allows us 

to take advantage of training data consisting of hybridizations of 

known viruses to a microarray to make predictions for unknown 

infections.  The incorporation of an HMM into VIPR now provides 

a probabilistic framework for assessing the presence of 

recombination between candidate parental viruses. To validate our 

approach, we applied our HMM to a set of 15 recombinant viruses 

consisting of members of the Alphavirus and Flavivirus genera, 

each of which was hybridized in duplicate to a custom microarray. 

A set of microarrays to which nonrecombinant alphaviruses and 

flaviviruses were hybridized constituted the training data for the 

HMM. While our test focused on the validation of a set of 

recombinant alphaviruses and flaviviruses, the strategy should be 

generalizable to detecting recombination among members of a 

given viral family. 

Fig. 1. Overall strategy for using an HMM to identify recombinant and nonrecombinant viruses hybridized to a microarray. Probe intensities indicative of 

binding can implicate the presence of a single virus (left) or the presence of different viruses for different loci (right). This pattern of intensities can be used 

to identify an optimal path through an HMM whose states represent binding or non-binding events between probes (columns) and virus genomes (rows). 

Nonrecombinant paths, such as the one on the left, involve transitions only between states in the same row, while paths that move from one row to another 

are indicative of recombination (as exemplified in the path on the right). 
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2 RESULTS 

RNA was purified from cell cultures that were infected with each 

of the viruses shown in Table 1 and Table 2. Purified RNA was 

subsequently randomly amplified and hybridized to a custom 

diagnostic microarray. 65 hybridizations (60 representing 

nonrecombinant alphavirus and flavivirus parental viruses + 5 

representing uninfected Vero cells) were performed in order to 

obtain a training set for the HMM. For validation of our algorithm, 

49 hybridizations (30 representing alphavirus and flavivirus 

recombinants + 15 representing alphavirus and flavivirus 

nonrecombinants + 4 representing uninfected Vero cells) were 

performed. 

In order to build the HMM, we first needed to establish a 

framework to define possible recombinant and nonrecombinant 

paths based on positional information inherent to each probe. The 

microarray probes were ordered by their position from 5’ to 3’ in  

the global alignment of candidate virus genomes (Figure 2). This 

was accomplished by mapping the set of oligonucleotide probes 

via local alignment (megablast) to each candidate virus genome, 

identifying probes for which the theoretical free energy associated 

with its probe:genome local alignment was ≤ -30 kcal/mol 

(indicative of binding using previously explained criteria (Allred, 

et al., 2010)), and converting the midpoint of the probe:genome 

local alignment for each of those probes to its corresponding 

position in the global alignment (Edgar, 2004) of candidate virus 

genomes. Probes that mapped to multiple genomes at similar 

positions but were offset relative to each other by 30 nucleotides or 

fewer were consolidated to a single position in the global 

alignment. Probes were then sorted by their positions in the global 

alignment of candidate virus genomes. 

Once the probes were ordered, they were assigned On and Off 

states for each genome. These assignments were based on the same 

Table 1. Alphavirus and flavivirus parental viruses grown in culture and 

hybridized to the diagnostic microarray. 

Genus Species Strain Genbank Strain # 

Alphavirus CHIKV LR 116047549  

Alphavirus EEEV BeAr436087 119633049 1 

Alphavirus EEEV FL93-939 119633046 2 

Alphavirus SINV AR339 9790313  

Alphavirus VEEV 68U201 1144527 1 

Alphavirus VEEV TC-83 323714 2 

Alphavirus VEEV TRD 323714 2b 

Alphavirus VEEV ZPC738 4689187 3 

Alphavirus WEEV CO92-1356 254595918a  

Alphavirus WEEV McMillan 254595918  

Flavivirus DENV-4 1228 12659201a  

Flavivirus JEV SA14-14-2 12964700  

Flavivirus SLEV CorAn9124 344221822a  

Flavivirus WNV NY99 158516887  

Flavivirus YFV 17D 9627244  

aGenbank ID represents a closely related strain since the sequence of the exact strain 

was not available 

bSince VEEV TRD and VEEV TC-83 genomes differ by only 11 nucleotides, they 

were considered to be the same strain (VEEV strain 2) 

 

Fig. 2. Structure of the HMM used to detect recombinant and nonrecombinant viruses. First, candidate virus genomes are aligned. Probes are then mapped 

to their respective positions in the multiple alignment based on predicted free energy of binding in order to achieve a universal ordering of probes. A state 

is created for each probe:genome combination (representing either a predicted binding or non-binding event). The HMM is subsequently parameterized 

with emission distributions and transition probabilities based on probe intensity distributions from the training data and a user-defined probability of 

recombination parameter P(Recomb), respectively.  at W
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theoretical free energy of binding calculated in the mapping step. 

On and Off states emit normalized and loge transformed intensities 

according to normal distributions estimated from training data as 

previously described (Allred, et al., 2010). Thus, all emission 

probabilities e(state, intensity) were derived from distributions 

estimated in a manner identical to the estimation of probe-specific 

On and Off distributions in VIPR except in the case where there 

were fewer than 8 intensities available in the training set for a 

given probe. In that case, the mean of the distribution was 

calculated from the available intensities, but the standard deviation  

was derived from the average standard deviation over all probes 

with a similar On or Off prediction. In addition to the candidate 

virus genomes, a null genome was included which represented a 

none-of-the-above genome prediction and was assigned an Off 

state for each probe. 

Finally, the states in the HMM were connected via transitions 

t(state, state) as depicted in Figure 2. As with HMMs that have 

been developed to detect recombination in sequence, probabilities 

representing recombination transitions could not be estimated 

directly from the training data as could the other HMM parameters 

(Schultz, et al., 2006). Thus, a user-specified probability of 

recombination parameter P(Recomb) was introduced to compute 

transition probabilities. Transitions connecting states within the 

same genome i.e. t(stateVirusA, stateVirusA) represented non-

recombination events and had the associated probability 1-

P(Recomb). Transitions between genomes i.e. t(stateVirusA, 

stateVirusB) represented recombination events and had the associated 

probability P(Recomb)/(n-1) where n is the number of candidate 

virus genomes (including the ‘null’ genome). In some cases, 

multiple probes mapped to the same position in the global 

alignment of candidate virus genomes. Transitions between states 

whose probes mapped to the same position were only allowed if 

those states corresponded to the same genome and were assigned a 

probability of 1.0, such that recombination events were not 

permitted between such states. Because the next state in the model 

is dependent only on the current state, and because states in the 

model emit from continuous intensity distributions, the model is a 

first-order continuous HMM. 

Two models were built and were used to analyze the 

alphaviruses and the flaviviruses, respectively. In order to 

experimentally define a suitable P(Recomb) for computing 

transition probabilities, we evaluated the performance of VIPR 

HMM on a subset of parental viruses, varying P(Recomb) over a 

range of values. We selected the maximum value of P(Recomb) 

that resulted in zero false positive recombination breakpoints when 

Viterbi was applied to the parental alphaviruses. This value, 

P(Recomb) = 10-25, was subsequently used when applying VIPR 

HMM to the parental flaviviruses as well as to the alphavirus and 

flavivirus recombinants. The Viterbi results were compared to 

expected results based on the known sequences of the recombinant 

constructs. When applied to the 5 flavivirus nonrecombinants, 

VIPR HMM classified each as the correct species. Additionally, 

the four uninfected Vero samples were accurately classified as 

null. VIPR HMM detected no recombination breakpoints for these 

samples except for one false positive breakpoint at the 3’ end of 

the dengue virus 4 genome, which bypassed the final 254 

nucleotides of the genome in favor of null states. VIPR HMM 

results for the nonrecombinant alphaviruses and flaviviruses are 

shown in Supplementary Figure S1. 

A total of 30 hybridizations of recombinant viruses was 

analyzed by VIPR HMM. Supplementary Figure S2 shows results 

for all recombinant alphaviruses and flaviviruses analyzed by 

VIPR HMM. Of the 30 hybridizations, 28 represented double 

recombinants between two parent viruses of distinct species and 

two represented triple recombinants composed of three distinct 

parental species. Thus, the total number of expected inter-species 

recombination breakpoints was (28 x 2) + (2 x 3) = 62. VIPR 

HMM correctly identified breakpoints and the identity of the 

parental species for 59 of the 62 total breakpoints. In the remaining 

Table 2. Recombinant alphaviruses and flaviviruses hybridized to the 

diagnostic microarray for validation of the HMM. 

Virus 

Recomb 

type Parents 

Coordinates in parental 

genomes 

R01 Double EEEV BeAr436087 

CHIKV LR 

1-7499;11291-11638 

7504-11313 

R02 Double SINV AR339 

VEEV TC-83 

1-7601;11394-11703 

7536-11382 

R03 Double SINV AR339 

CHIKV LR 

1-7601;11383-11703 

7502-11313 

R04 Double SINV AR339 

WEEV CO92-1356 

1-7602;11385-11703 

7466-11210b 

R05 Double SINV AR339 

EEEV BeAr436087 

1-7601;11312-11703 

7498-11291 

R06 Double SINV AR339 

VEEV TRD 

1-7601;11394-11703 

7536-11382b 

R07 Double VEEV TC-83 

CHIKV LR 

1-7533;11328-11446 

7500-11313 

R08 Double YFV 17D 

DENV-4 1228 

1-481;2453-10862 

441-2423b 

R09 Double YFV 17D 

JEV SA14-14-2 

1-481;2453-10862 

477-2477 

R10 Double YFV 17D 

SLEV CorAn9124 

1-481;2453-10862 

456-2465b 

R11 Double YFV 17D 

WNV NY99 

1-481;2453-10862 

466-2469 

R12 Doublea SINV AR339 

VEEV TC-83 

VEEV 68U201 

1-7601;11394-11703 

7536-8286 

8298-11398 

R13 Doublea SINV AR339 

EEEV BeAr436087 

EEEV FL93-939 

1-7601;11312-11703 

7498-7640(7641-7675)c 

(7673-7707)7708-11323 

R14 Doublea SINV AR339 

VEEV TC-83 

VEEV ZPC738 

1-7601;11394-11703 

7536-8353(8354-8406) 

(8331-8383)8384-11359 

R15 Triplea SINV AR339 

EEEV BeAr436087 

EEEV FL93-939 

WEEV McMillan 

1-7601;11385-11703 

7498-7640(7641-7675) 

(7673-7707)7708-7902 

7802-11210 

Coordinates corresponding to the parental genomes listed in Table 1 are given. For 

the recombinant alphaviruses, a short cloning sequence (between three and ten 

nucleotides) is present at the 3’-most recombination breakpoint. 

aadditional intra-species breakpoints present 

bcoordinates derived from closely related strain listed in Table 1 

cparentheses represent regions of overlap between two parents sharing identical 

sequence 
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three instances, VIPR HMM yielded false negatives. Of all the 

recombinant and nonrecombinant samples analyzed by VIPR 

HMM, only two false positive breakpoints were predicted (one in a 

nonrecombinant virus and one in a double recombinant virus 

which was incorrectly identified as a triple recombinant by VIPR 

HMM). VIPR HMM results for a subset of the recombinant viruses 

that were identified unambiguously are shown in Figure 3A. 

In some cases, the recombinant viruses we used included intra-

species recombination breakpoints. Of the 8 intra-species 

breakpoints, 2 were identified by VIPR HMM. For those 2 

breakpoints, the correct viruses 5’ and 3’ of the breakpoint were 

identified (both species and strain). VIPR HMM results for a 

subset of the recombinant viruses that gave unexpected results are 

shown in Figure 3B. 

VIPR HMM was used to estimate the nucleotide positions of 

each breakpoint in each parental genome. The nucleotide positions 

associated with recombination breakpoints were estimated based 

on the position in the alignment of the probes associated with the 

recombinant transition in the Viterbi path. For each such probe, its 

position in the alignment was correlated with a position in the 

Viterbi-specified parental virus genome to estimate the nucleotide 

position of the recombination breakpoint in that genome (See 

spreadsheet in Supplementary data). The differences between the 

nucleotide positions estimated by VIPR and the actual sequence 

positions ranged from 0 to 90 nucleotides. 

3 DISCUSSION 

The ability of DNA microarrays to simultaneously assess the 

presence of multiple loci in microbial genomes is highly 

advantageous for detecting recombination between virus species in 

a diagnostic setting. Despite this, none of the existing methods for 

analyzing diagnostic microarrays is designed to accommodate the 

detection of recombinant viruses. In previous work, we developed 

VIPR, a method for objectively interpreting diagnostic 

microarrays. One of the advantages of VIPR relative to other 

methods is that it relies on a training set of empirical 

hybridizations of virally infected and uninfected samples to 

leverage diagnostic predictions. We anticipated that relying on a 

training set of hybridizations from known viral infections would 

also help us predict recombination between virus species. In this 

study, we developed a hidden Markov Model (HMM) 

parameterized with VIPR probability distributions to detect 

recombination in unknown infections. 

VIPR HMM performed with high accuracy when identifying 

recombination breakpoints between viral species (59/62 such 

breakpoints were identified and the correct virus species 5’ and 3’ 

to the breakpoint were identified in each case). Of the 8 intra-

species breakpoints in our data set, two were identified by VIPR 

HMM. Given that a much higher percentage of inter-species 

breakpoints were detected than were intra-species breakpoints 

(95% versus 25%), these results demonstrate that VIPR HMM is 

Fig. 3. VIPR HMM results for a subset of recombinants tested. A. VIPR HMM results for three recombinants that gave expected results. For each 

recombinant, the expected output based on sequence is shown, followed by the VIPR HMM output for the two hybridizations performed. B. VIPR HMM 

results for three recombinants that gave unexpected results. R06 is a double recombinant for which an additional false positive recombination breakpoint 

was identified at the 3’ end in one hybridization, and for which a 3’ inter-species recombination breakpoint was not identified in the other hybridization. R14 

is a double recombinant for which a 3’ inter-species recombination breakpoint was identified in one of the hybridizations, but not the other. Additionally, an 

intra-species recombination breakpoint was not identified in either hybridization. R15 is a triple recombinant for which all three inter-species recombination 

breakpoints were identified in both hybridizations, but for which an intra-species recombination breakpoint was not identified in either. 
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more effective at detecting recombination between species than 

between strains belonging to the same species. The ability of VIPR 

HMM to distinguish between strains of the same species involved 

in recombination is likely influenced by the degree of sequence 

divergence between the two strains. VIPR HMM correctly 

identified the intra-species breakpoint in both hybridizations of 

R12 (Figure 3). The two strains comprising the intra-species 

breakpoint for R12 are 23% divergent on the nucleotide level. 

However, VIPR HMM was not able to identify the intra-species 

breakpoint in either hybridization of R14 (Figure 3), whose 

recombinant regions 5’ and 3’ to the intra-species breakpoint were 

similar in size to those of R12, but whose strains comprising the 

intra-species breakpoint are only 4% divergent on the nucleotide 

level. The ability of VIPR HMM to distinguish between strains of 

the same species may also be influenced by the size of the 

recombinant segment. The four other intra-species breakpoints that 

VIPR HMM failed to detect had greater dissimilarity between 

flanking strains (25%) but were proximal to other breakpoints 

(within 200 nt). Given the cost in probability associated with 

following a recombinant transition in the HMM, our results 

suggest that Viterbi may opt to bypass small recombinant regions. 

Although we have not specifically tested VIPR HMM for 

higher-order recombinants (>3 breakpoints), we anticipate that the 

identification of higher-order recombinants will only be hindered 

inasmuch as additional recombination events within a fixed-size 

genome yield smaller recombinant segments to be identified. 

Given that VIPR HMM was shown to identify recombinant regions 

as small as ~300 nucleotides where there was sufficient divergence 

between recombining species, we expect VIPR HMM would be 

able to detect similar regions in higher-order recombinants. 

Since microarray probes are mapped to their position in an 

alignment of candidate genomes, VIPR HMM can use the probes 

located at the boundary of a predicted recombination event to 

estimate nucleotide positions of recombination breakpoints. 

Although it was not expected that using a microarray tiling scheme 

wherein probes were non-overlapping and spaced 63 nucleotides 

apart would give the precise nucleotide positions of recombination 

breakpoints, we compared the estimates given by VIPR HMM to 

the nucleotide positions known from sequence. For the 61 correctly 

identified breakpoints (59 inter-species, 2 intra-species), the 

differences between microarray estimates and actual positions 

ranged from 0 to 90 nucleotides. Therefore, the maximum distance 

observed falls within the span of about a two probe tiling (i.e. 90 < 

60mer + 3 nt spacing + 60mer). We expect that using higher 

density tiling strategies would result in higher resolution mapping 

of the breakpoints. 

Only two false positive recombination breakpoints were 

predicted by VIPR HMM, both near the 3’ ends of their respective 

genomes. One bypassed the final 254 nucleotides of dengue virus 4 

in favor of null states. The other bypassed the final 191 nucleotides 

of Sindbis virus in favor of VEEV states. From analysis of the 

training data, it was observed that the mean of the On distributions 

approach the mean of the Off distributions for probes near the 3’ 

end of each genome, due to lower intensities for On probes in the 

training set for that region. This trend was observed in the training 

data universally for all genomes. The tendency for On probes to 

give lower intensities when approaching the 3’ end may be 

attributable to the fact that random PCR amplification, which was 

used in the preparation of each sample for hybridization, is less 

efficient at the ends of a linear genome. This could also explain 

why VIPR failed to detect three inter-species recombination 

breakpoints, all of which are localized near the 3’ end of a genome. 

A similar pattern of lower intensities was also observed for On 

probes approaching the 5’ end, although there appeared to be more 

probes in those regions that behaved as expected based on ∆G 

compared to the 3’ end. Despite the observed decrease in 

hybridization intensity proximal to the 3’ and 5’ termini, VIPR 

HMM was still able to make accurate predictions in those regions 

in most cases. 

Although we did not specifically validate VIPR HMM for 

reassortant viruses, we anticipate that viral reassortants would be 

readily detected. Reassortment can occur during co-infection when 

virus progeny inherit genome segments from two or more parental 

viruses with multi-segmented genomes. The resulting chimeric 

genotypes associated with reassortment are similar to those 

generated though recombination except that the exchange of 

genetic material occurs at discrete, predictable points in the 

genome i.e. at the boundary between genome segments. VIPR 

HMM could also be applied to the analysis of bacterial genomes 

and for the detection of the loss of transposons, integrons and 

plasmids, assuming those elements are represented in members of 

the training set. 

One challenge in building an HMM for detecting recombination 

is finding an appropriate value for P(Recomb), a user-inputted 

probability of recombination parameter used to calculate different 

transition probabilities in the model. Our choice of P(Recomb) was 

based on minimizing false positive recombinations in 

nonrecombinant samples. If P(Recomb) is increased by five logs 

i.e. P(Recomb) = 10-20, the number of correctly called breakpoints 

is increased to from 59/62 to 60/62. However, there are an 

additional 3 false positive breakpoints called near genome ends. 

Nonetheless, in some cases, it may be advantageous to increase 

P(Recomb) in order to increase detection sensitivity. If P(Recomb) 

is decreased by five logs i.e. P(Recomb) = 10-30, there is no change 

in the results. 

VIPR HMM relies on a multiple alignment of candidate 

genomes to order microarray probes. One limitation of this 

approach is that only recombination between members of the same 

family will be considered as candidates since it is not generally 

feasible to globally align members of different families. In 

addition, because paths through the HMM follow a specific 5’ to 3’ 

ordering, only recombination at homologous sites is detectible by 

VIPR HMM as currently implemented. In future versions of VIPR, 

recombinants composed of viruses from different families could be 

detected by running multiple iterations of Viterbi, one for each 

HMM representing a different virus family. For a hypothetical 

recombinant between members of two different virus families, we 

anticipate that the HMM for each family would predict the 

presence of only a portion of the viral genome from its family 

(with the rest of the prediction being the null genome). With 

respect to selecting an appropriate P(Recomb) for detecting 

interfamily recombination, there are several different approaches 

that could be taken. One would be to use the same P(Recomb) for 

inter-family events as is used for intra-family events. Another 

would be to lower P(Recomb) for inter-family events. The choice 

of strategy would likely depend on what was known a priori about 

the possibility of certain families recombining. 
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The time complexity for the VIPR HMM algorithm is n x m 

where n is the number of probes and m is the number of genomes. 

The 22 alphavirus recombinant samples were analyzed in under 30 

seconds on a single-processor PC with 4 GB RAM. Thus, if the 

number of candidate genomes were increased to one thousand 

while the number of probes remained the same, it would take 

approximately 150 seconds or 2.5 min to analyze one sample on a 

similar machine. 

4 CONCLUSIONS 

We developed a hidden Markov model (HMM) to identify 

recombination in viruses that have been hybridized to a microbial 

detection microarray. This model builds on previous work in which 

empirical hybridizations of cultured viruses were used as training 

to classify unknown infections (VIPR). Applying the HMM in 

conjunction with VIPR enabled the detection of inter-species 

recombination breakpoints with high accuracy in two different 

families of viruses. This is the first report of a method for 

analyzing diagnostic microarrays that includes recombination as a 

possible diagnostic outcome. Our method is theoretically 

applicable to detecting homologous recombination or reassortment 

between members of any family of viruses for which a set of 

nonrecombinant parental viruses is available for training and for 

which genome sequences are available. The inherently parallel 

nature of diagnostic microarrays coupled with powerful methods 

for analysis enhance our ability to rapidly and accurately identify 

novel recombinant viruses responsible for disease outbreaks, either 

due to emergence by natural means or by engineered recombinant 

viruses. 

5 MATERIALS AND METHODS 

5.1 Design of the diagnostic microarray 

60mer oligonucleotide probes were designed from sequences representing 

three virus families (Bunyaviridae, Flaviridae and Togaviridae) using a 

tiling strategy. 145 RefSeq genomes and genome segments from the 

aforementioned virus families were obtained from Genbank. To the RefSeq 

set we added from Genbank as many complete genome sequences as were 

available of the parental viruses of the 11 recombinant alphaviruses. Partial 

genome sequences for the parental alphaviruses were added if complete 

genomes were not available. Additionally, complete genome sequences of 

alphaviruses that did not represent parents of the recombinant viruses were 

added until there were in the set at least three complete genomes of each of 

EEEV, VEEV, WEEV, Chikungunya and Sindbis viruses. The final set of 

Genbank records totaled 193, of which 175 were complete or nearly 

complete genomes or genome segments. Probes were selected as 60 

nucleotide windows tiled over all 193 sequences with a spacing of three 

nucleotides between the 3’ end of one probe and the 5’ end of the following 

probe. The reverse complement of each 60mer was also included in the 

microarray. The resulting set of probes including reverse complements 

totaled 43414 and the Agilent® 4 x 44 K platform was used (GEO 

accession GSE34490). 

5.2 Hybridization of alphavirus and flavivirus 

parental and recombinant viruses to the 

diagnostic microarray 

21 alphaviruses (11 recombinants + 10 parental viruses) and 9 flaviviruses 

(4 recombinants + 5 parental viruses) which have been previously 

described (Atasheva, et al., 2009; Ni, et al., 2007; Paessler, et al., 2003; 

Paessler, et al., 2006; Wang, et al., 2007; Wang, et al., 2008) were obtained 

from the World Reference Center for Emerging Viruses and Arboviruses 

and were grown in Vero cells. RNA was extracted using standard Trizol® 

protocols and was reverse transcribed and randomly amplified as 

previously described (Wang, et al., 2003). For each recombinant, two 

independent amplifications were performed, while five independent 

amplifications were performed for each parental virus. The resulting 

amplified material was then coupled to a fluorescent dye and hybridized to 

the tiling microarray. Raw data measurements were collected using 

GenePix Pro® software. In total, 114 hybridizations were performed (30 

recombinant + 75 parental + 9 uninfected Vero cells). All raw microarray 

data are available in NCBI GEO (accession GSE34490). The training set 

for our HMM consisted of 60 parental hybridizations + 5 Vero negative 

control hybridizations, while the test set for validating the algorithm 

consisted of the 30 recombinant hybridizations + 15 parental hybridizations 

+ 4 Vero negative control hybridizations. 

5.3 Viterbi algorithm for finding the optimal path 

By multiplying emission probabilities e(state, intensity) and transition 

probabilities t(state, state) across a series of states, it is possible to obtain a 

probability for an entire path through an HMM. For our HMM, the set of 

emission and transition parameters is abbreviated as θ. The probability of a 

particular path (π) and a given hybridization (x) of length L can be 

expressed as a joint probability: 

 
1 1

1

( , | , ) (0, ) ( , ) ( , )
L

i i i i

i

P HMM t t e xπ θ π π π π+
=

= ∏x   

The Viterbi algorithm falls into a class of algorithms called dynamic 

programming algorithms that are commonly used in conjunction with 

HMMs. Using the Viterbi algorithm allows us to identify the most probable 

series of states (π’) through our HMM  where 

 arg max ( , | , )P HMMππ π θ′ = x   

Points of recombination can be inferred from places in the path where a 

transition between states of different genomes has occurred. As with other 

dynamic programming algorithms, the Viterbi algorithm consists of an 

initialization step, an iteration step and a termination step. Once the 

dynamic programming matrix (V) is populated, the optimal path is traced 

back through a shadow matrix (τ) of stored pointers. Except for the begin 

and end states sbegin and send and states in a given path (πi), all other states 

(sg,i) are indexed by genome (g) and probe (i). The V matrix and τ matrix 

are similarly indexed. Calculations are performed in log space although 

they are shown here in probability space. The Viterbi algorithm adapted 

from (Durbin, 1998) is as follows: 

(1) Initialization (g = 1 to n) 

 ,1 ,1 ,1 1( , ) ( , )g begin g gV t s s e s x=   

(2) Iteration (i = 2 to L; g = 1 to n) 

 , , 1 , 1 , 1 ,( , )max ( , )n

g i g i i j j i j i g iV e s x V t s s= − −
 =     
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 , 1 , 1 , 1 ,arg max ( , )n

g i j j i j i g iτ V t s s= − − =     

(3) Termination 

 1 , ,max ( , )n

j j L j L endP( , | HMM, ) V t s sπ θ =
′  =  x   

 1 , ,arg max ( , )n

L j j L j L endV t s sπ =
′  =     

(4) Traceback (i = L to 2) 

 1 ( , )i i iπ τ π−
′ ′=   

Traceback reveals the optimal path through the HMM. If the path includes 

states representing only one genome, the optimal path is a nonrecombinant 

path. If the optimal path includes transitions between states of different 

genomes, the path is recombinant, and the global alignment positions 

corresponding to the probes associated with the states involved in each 

transition are referenced. These global alignment positions are then back-

converted to genomic positions in the predicted virus parents in order to 

define the recombinant breakpoints between virus genomes on the 

nucleotide level. 

ACKNOWLEDGEMENTS 

We thank Michael Brent for useful discussions. 

 

Funding: This work was supported by NIH grant U01 AI070374 

and by a grant from the National Institute of Allergy and Infectious 

Disease (NIAID) through the Western Regional Center of 

Excellence for Biodefense and Emerging Infectious Disease 

Research, National Institutes of Health (NIH) grant U54 

AIO57156. 

 

Conflict of interest: none declared. 

REFERENCES 

Allred, A.F., et al. (2010) VIPR: A probabilistic algorithm for analysis of microbial 

detection microarrays, BMC Bioinformatics, 11, 384. 

Atasheva, S., et al. (2009) Chimeric alphavirus vaccine candidates protect mice from 

intranasal challenge with western equine encephalitis virus, Vaccine, 27, 4309-

4319. 

Brandler, S., et al. (2005) Replication of chimeric yellow fever virus-dengue serotype 

1-4 virus vaccine strains in dendritic and hepatic cells, Am J Trop Med Hyg, 72, 

74-81. 

Briese, T., et al. (2006) Batai and Ngari viruses: M segment reassortment and associa-

tion with severe febrile disease outbreaks in East Africa, J Virol, 80, 5627-5630. 

Durbin, R. (1998) Biological sequence analysis: probalistic models of proteins and 

nucleic acids. Cambridge University Press, Cambridge, UK New York. 

Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and 

high throughput, Nucleic Acids Res, 32, 1792-1797. 

Gardner, S.N., et al. (2010) A microbial detection array (MDA) for viral and bacterial 

detection, BMC Genomics, 11, 668. 

Gerrard, S.R., et al. (2004) Ngari virus is a Bunyamwera virus reassortant that can be 

associated with large outbreaks of hemorrhagic fever in Africa, J Virol, 78, 8922-

8926. 

Jegouic, S., et al. (2009) Recombination between polioviruses and co-circulating 

Coxsackie A viruses: role in the emergence of pathogenic vaccine-derived po-

lioviruses, PLoS Pathog, 5, e1000412. 

McLoughlin, K.S. (2011) Microarrays for pathogen detection and analysis, Brief 

Funct Genomics, 10, 342-353. 

Neumann, G., Noda, T. and Kawaoka, Y. (2009) Emergence and pandemic potential 

of swine-origin H1N1 influenza virus, Nature, 459, 931-939. 

Ni, H., et al. (2007) Recombinant alphaviruses are safe and useful serological diagnos-

tic tools, Am J Trop Med Hyg, 76, 774-781. 

Paessler, S., et al. (2003) Recombinant sindbis/Venezuelan equine encephalitis virus is 

highly attenuated and immunogenic, J Virol, 77, 9278-9286. 

Paessler, S., et al. (2006) Replication and clearance of Venezuelan equine encephalitis 

virus from the brains of animals vaccinated with chimeric SIN/VEE viruses, J Vi-

rol, 80, 2784-2796. 

Rehrauer, H., et al. (2008) PhyloDetect: a likelihood-based strategy for detecting 

microorganisms with diagnostic microarrays, Bioinformatics, 24, i83-89. 

Schultz, A.K., et al. (2006) A jumping profile Hidden Markov Model and applications 

to recombination sites in HIV and HCV genomes, BMC Bioinformatics, 7, 265. 

Urisman, A., et al. (2005) E-Predict: a computational strategy for species identifica-

tion based on observed DNA microarray hybridization patterns, Genome Biol, 6, 

R78. 

Wang, D., et al. (2003) Viral discovery and sequence recovery using DNA microar-

rays, PLoS Biol, 1, E2. 

Wang, E., et al. (2007) Chimeric Sindbis/eastern equine encephalitis vaccine candi-

dates are highly attenuated and immunogenic in mice, Vaccine, 25, 7573-7581. 

Wang, E., et al. (2008) Chimeric alphavirus vaccine candidates for chikungunya, 

Vaccine, 26, 5030-5039. 

Watson, M., et al. (2007) DetectiV: visualization, normalization and significance 

testing for pathogen-detection microarray data, Genome Biol, 8, R190. 

 at W
ashington U

niversity School of M
edicine L

ibrary on O
ctober 19, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/



